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1. INTRODUCTION

* In thitaport we investigate the scattering of scalar waves from a distribu-

tion of a finite number of scatterers. The technique we employ was developed by

Montroll and West 1 to describe the discrete scattering of scalar waves from

* defects on regular lattices. The method makes no assumptions about the sym-

metry of the scatterers and therefore can be applied to inhomogeneities of arbi-

trary shape. The majority of the approaches used in the past have had to either

• truncate the multiple scattering integrals at some appropriate order2 or res-

trict the investigation to scatterers having a high degree of symmetry.3 We

avoid both these limitations here by characterizing a scatterer by a distribution

of N defects and solving the scattering problem for these N defects exactty. The

only limitation of the technique is the maximum number of defects one can use

to specify the scatterer, which in turn is determined by limitations in computa-

tion time.

The problem posed by the scattering of a scalar wave from a fixed obstacle

of known shape and composition is primarily numerical and involves the solution

of a linear integral equation. The propagation of an ultrasonic wave through a

homogeneous, isotropic elastic material is described by a scalar wave equation.

The scattering of such a wave from an imperfection in the solid generates both

longitudinal and transverse waves, which satisfy linear integral equations with a

propagation kernel given by a Greens tensor.4 At present a numerically tract-

able theory for the scattering of an elastic wave from a flaw of arbitrary shape,

i.e. one not possessing spatial symmetry, does not exist. In nondestructive

evaluation (NDE), where such waves are used as probes to determine the shape,

size and composition of flaws in materials, the analysis has been restricted to

either long or short wave approximations. In the former case the Born

-.
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approximation has been used extensively and in the latter a generalization of

the diffractive geometric optics approximation originally due to Keller 6 has been

used. An approach which can span the gap in wavelengths between these two

extremes is highly desirable.

Herein we limit our discussion to scalar waves scattering from inhomo-

geneities and examine properties of the scattered wavefield in the far field

region. Among the scattering configurations we examine are line scatterers of

finite length. i.e., hairline cracks, including the effects of bends in the crack and

cracks of finite lateral extent also rectangular patches of scatterers. The exact

scattered wavefleld from such theoretically repelling, but physically interesting

objects has not been calculated previously.

In Section 2 we review the mathematical formalism for the scattering of

scalar waves from defects on a simple cubic lattice. The lattice is chosen for

computational convenience and is not to be confused with the crystal lattice of

the material. A real metal such as iron consists of an agglomeration of crystals

having a characteristic dimension of 0.025 cm with arbitrary shapes and orienta-

tions. Each of these crystals is called a grain and there exists a distribution of

grain sizes in such polycrystalline materials. The distribution of grain sizes

determines the fracture micro-mechanics of the elastic material and can dom-

inate such effects as crack formation and propagation. Here we are not con-

cerned with the generation or evolution of cracks, but rather with their detec-

tion. Thus we feel that the use of our computational lattice is justified for this

preliminary investigation of S-wave scattering in NDE. We show in Section 2 that

in the solution for the scattering of a wave from N defects no assumptions are

made about the relative positioning of the defects. An extended scattering

object is therefore represented by a distribution of N such defects. The

Montroll-West model solution is not an exact representation of the scattering

- °j° o' .. .o..o. ... o..-.... .. . . •. ........... ......-. . _........
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from a flaw, because the flaw is represented by only N defects. However, the

ratio of determinants is the ezact scattering solution to the N point represen-

tation of the flaw.1 The exact nature of the model enables one to exploit the

method to determine the effects of interference and resonance in the specular

reflection from cracks.

In Section 3 we discuss the physical interpretation of the form of the solu-

tion to the N defect scattering problem. One can relate the terms in the expan-

sion of the determinants to scattering diagrams and associate elements with

particular multiple scattering effects. In this way various effects can be sys-

tematically suppressed by using approximations to the expanded form of the

determinants. It is suggested that this technique can be used to check other

approximation methods in situations where exact analytic or numerical calcula-

tions cannot be made using more standard methods.

In Section 4 we present the results of our calculations.

0
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2. DISMRETE SCAITERING MODEL

. Continuum Equations

The propagation of a scalar wave through a homogeneous. isotropic elastic

material is described by the wave equation

V2#(rt ) 2 L -t'(r,t) = 0 (2.1)

where '( r,t ) is the wavefleld at position r and time t i;.nd c is the wave speed in

the material. For awavefleld of frequency e , i.e. #( r,t) = * (r) exp [-iwt]

40 we can rewrite (2.1) as the Helnholtz equation

1_ VO ( r) + nk.4 (r) = 0 (2.2)
T

where the factor of -has been introduced for later convenience and

n M.6 / 2c 2kj. The Helmholtz equation is an elliptic partial differential equa-

tion, so that in order to find the field 0 at a given point r one must solve the

equation for the field at all points in space. This property of elliptic partial

differential equations severely limits the analytical and numerical tractability of

(2.2).

The Helmholtz equation arises in many contexts, e.g. in the propagation of

electromagnetic waves in media where polarization effects are not important;

the Schr6dinger description of a matter wave in an energy eigenstate, etc. Each

of these applications has precipitated its own sequence of approximations for

solving (2.2), including the conversion of (2.2) into a parabolic differential equa-

tion. The physically interesting situation is when the medium is non-

homogeneous, e.g. flaws in an elastic material. In this case we write

no = 1+V(r)/kc (2.3)

where V ( r) characterizes the inhomogeneity. This function can also be the

potential in quantum mechanics, the variable index of refraction in a medium

with changing optical properties, the spatially dependent dielectric coefficient
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for a plasma with density variations, etc. The solution of (2.2) with (2.3) inserted

* is given by the integral equation

I(r) = 0o(r)-fg(r. reno) V (r') $ (r')d r '  (2.4)

where g ( r, r';no) is the Greens function that satisfies the equation

e - g( r. ;no) + k 2g( r,. ;no) 6(r - ), (2.5)

and t( r) is the wave field when V( r) = 0.

B. Discrete Equations

The discrete analog of the Helmholtz equation is here obtained by interpret-

ing the V2 in (2.1) as the second difference 'laplacian"

V-b j , (E--2+E7') (2.6)

where the E?1 s are the discrete translation operators on a simple cubic lattice,

I.e.

fr (I ... .... 0) (1. •

= Ej-1 f(LI... Lj + 1..). (2.7)

The position vector r = 1b has the lattice components (l1 ,L2,1 3) with the ele-

ments of I being integers and b is the lattice spacing. The free lattice can

support the propagation of plane waves with frequency w and wave vector

k = (k l,k2,ka) so we substitute the plane wave

0o ( nb) = expli k. lb i (Z.8)

into (2.2) and replace nko2 by the eigenvalues Xk. i.e.

Xi = .[ 3 - cos(bkj) - cos(bk2 ) - cos(bks)]. (2.9)

We impose periodic boundary conditions on the lIttice such that

* (z + Nb,y.z) = 4$(z,y + Nb,z) = t (z,y,z + Nb) = (P(x,,z). This imposi-

tion restricts the components of k to integral multiples of 2Tr / Nb, i.e..

k = -n where n a (in,n 2,ns) and jn 1.n 2,n = 0,1,• N. Introducing the

'~~~~~~~~~~~~.:..'....-..--.-.-. ...... ....-.... .. ... . ....- . -. . ..



lattice Greens function

G (I b;no) =A -- SAexpli -n 1I (2.10)

N' N

into the discrete analog of (2.5) and equating coefficients of exp i 21T n. I / N ,

yields A = (i, - X,)-
'. Thus the Greens function on the simple cubic lattice is

given by
n) V exp ji2in /N 2.11)

N t b-3 + t cos(2rn1/N)

whn there are N lattice sites in each of the three dimensions. The Greens func-

tin (2. 11) describes the free propagation of a plane wave on a homogeneous iso-

trpc simple cubic lattice.

CQ TbnUar' Sattering

We consider a set of time independent defects on the set of lattice points

116 1. a = 1. 2 .... n. In the presence of these defects the discrete Helmholtz

equation takes on the inhomogeneous form

) + -lV(l) 0(lb) (2.12)

where

kit = . 1 2.3
V(M) = 0 otherwise (2.13)

and A ( a is the strength of the defect, here produced by a variation in the

Po

density at the set of sites I J I. We shall refer toV (1) as the scattering poten-

tial for the wave and X as its strength. The plane wave (2.8) is a solution to (2.12)
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in the limit X -, 0. The full solution of the inhomogeneous equation (2.12) is then

a linear superposition of the incident plane wave and the scattered wave pro-

duced by the potential, i.e.

*(lb) = expiiki'Ib A- G(I - I6 ;no) V (1,)4P(I b ) (2.14)

which is analogous to the continuum solution (2.4). We have indicated the value

of the incident wave vector by k t in (2.14).

To solve equation (2.14) for the total wave field t (I b) we introduce the

notation

GCp - G (I.- I ; o) Go, - G(I- I .;o): ; it (1.b)

V. v(I.). (2.15)

Then if we successively let I be equal to the location of each of the n potential

sites 1 I in (2.14) we obtain the n inhomogeneous linear equations

(1 + XG1 1 V1)t 1 +X G12 VA2 ..... + X GI. Vz = expjik- "l1 b j

X........................................ + X G V,$ = exp lik. . 2 6

X Gh It = ~2 1X"VO exp lik. l, b j

The solution to this set of equations when n=2 is

1 exp(ikt'I 1b) XG 12 V2

A2 exp(ik.i 12 b) I+XG2 2 V 2 ] (2.17a)

r + X G11 V exp(ikj • 1. b) ]
012 A2  X G21 V, exp(iki•1 2 b) (2.17b)

where

S.

0"

- - . .
.4......

* - ~. . . . . . . . . .
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vA GJi Vi X G V (2.17c)

When (2.17a) and (2.17b) are introduced into the solution (2.14), the full expres-

sion for 0( lb) becomes a sum of terms which is easily arranged as the ratio of

two determinants. The total wavefield at the observation site I is then given by

-
[ exp(i k, • Ib) X GoV A G02 V2

(tb) exp( i ki •lb) I + XG11 VI  X G12 V2  (2.18)
exp(i ki1 2 b) AG 2 1 VI I +AG2V 2

The above argument may be repeated in every detail to obtain the total

wavefteld after scattering from n point potentials:

exp (i k• I b) X Gol V.. A Go. V
1 exp (- ki I I b) 1+ XGil V, XGI. V

,t = 1 : i (2.19)

exp (i k l.,b ) , , V,. ... 1 + X G,,V,
where

A, W f n I p(et + G by 1,2,-tedt r (220)

We define the function D, (1.2, •••n) by the determinant

D (1.2."n ) 1 I+X G2 V2  (2.21)[exp(i ki,b 1 . + X G22 Vn

and are therefore able to express the wavefeld at the site 1I as

t(Ilb) = D1 (1,2. '-)/t A.. (2.22)

At the arbitrary potential site I p we can write the wavefield as

O(lpb) = D ( , + .. .. - )/ (2.23)

where the ordering of the indices in the determinant Dp is just a cyclic permuta-

tion of the lattice site indices in (2.21). The exact total wavefield can then be

written as

- "° ,- °- * °o- ° . . oo -°. . -". ° .
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(Ilb) = expjikIb---- G..V.Da (2.24)

0 which is an expansion of the determinant solution (2.19) in terms of minors.

04

*q

0i

I. J

p. . . . . . . . . 4 *..-
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3. INTERPRETATION OF EXACT SOLUTION

* In this section we investigate expressions for the scattered wavefleld as

sums of contributions from single scattering, double scattering, triple scattering

etc. The series we obtain are analogous to the Born series, but the individual

* propagators are renormalized. i.e. they contain factors that correspond to the

resummation of interaction terms of a particular form. Let us first examine

various choices for these resummations.

0 A. Renormalized Potentials and Propagators

Consider the following factored form for the determinant A.:

(1+XG 11 V)(1 + XG2 2 V2 ) ... A (3.1)

where we define the scaled determinant

An - detl6ap+(1-6.p)XGapVp ;a,, = 1.2, n. (3.2)

and Vp is to be interpreted as the renormalized potential

V#--- V0 (1 + A p Vp -(3.3)

In terms of A, and Vp the wavefield (2.19) can be expressed as

exp(i kj - I b) X Go, V- .. , o Vn

S(lb - exp(i k1 .1 1 b) 1 XGin V3

exp(i k ' Inkb) X GhVj ... 1

Each off-diagonal element of the determinant (3.4) has the form

Sa.pv = + xGa , =, •+ (3.5)

which corresponds to a self-interaction term in a diagrammatic expansion.

Such resuTnmations are mandatory when considering scattering from potentials

0 *
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whose strength becomes singular at short distances, e.g. nuclear scattering,

hard spheres collisions or specular reflections of scalar waves from caustics. It is

clear that as A Vp -. each terms on the right hand side of (3.5) diverges,

whereas the infinite series converges to Gp / Gpp. Thus all the terms in the

wavefleld (3.4) are expressed in terms of the renorrnalized potentials so that

each term individually remains finite as X Vp-o, i.e. im X Vp = 1/ Gpp.

In the second renormalized form the determinant A, is written in the fac-

tored form

An = (1 + XG,,IV) (i+XG22V2 ) ... A (3.6)

where we define the scaled determinant A, as

A, - det16,p+(1-6p) X Gap Vp ;.= 1,2..-n (3.7)

* and G.# is to be interpreted as the renormalized propagator

Gap o Gap (I +X Go. c V) (l + A Gpp Vg)-*. (3,8)

Again we note that X Gp Vp remains finite as the set of potentials V 1. become

infinite (as long as they all become infinite in the same way).

In terms of A, and G6 p the total waveteld can be written as

exp(i k, 1b) U• U

t W, 1\ Gi ,.U.
*(1b) = Wi 1 : (3.10)

Wn X Gn Ui ... 1

where we have introduced the functions.

U4 = A Go. VO/ + GA.. V). (3.11a)

W= exp( k( .I ,b)/(1 + AG, V.)%. (3.11b)

>; ; .'..'.. .'...-. .,< .. ,.-...., .. .... .-... .. ,. ., . .. . - . .. . .. . . .. 7. . .
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In this factorization, an expansion of the determinant (3.10) in minors always

yields terms of the form U. Wa which remain finite for singular potentials. The

renormalization Greens functions in (3.10) can be interpreted as the propaga-

tion of a plane wave on a lattice distorted by the presence of the

n point-potentials.

R Multiple Scattering Approximations

Consider first the case of plane wave scattering from three point potentials,

= 1.12. 13. The solution (3.4) can be expressed in terms of:

X~ ) Ge.p Vp (3.12)

as :

rexp(ik.Ib) g g 902 g m

(l) 1 exp(i ki.11b) 1 912 g 131 )exp(ik 1 .1 2 b) I 1 923 (3.13)
A3  epik 2b 2 2

[exp(i kt Ib) gs 932 1

Expanding the determinant in the numerator of (3.13) yields

t(lb) = + - go e A,2b{ ,( )+ g + 9OG }(3.14)
AS a=l Phoe P0,7

The quantity A2 T1) is the 2 x 2 determinant A2 which involves only the g's with

subscripts 2 and 3 but not 1. Each term in the expansion can be identified with a

scattering diagram, [cf. Figure 1]. Figure la represents the single scattering of

our original plane wave by the potential at site 11. The full form of the contribu-

tinn of that term to 0 (1b) is

A2 ~ ~ kT1)~ tk. .1 2(l)
9o, -= = X Go, V, e (3.15)

As A3

The factor exp(i kt IIb) in (3.15) represents the plane wave incident upon the

scattering point I ,; XV1 represents the effective (renormalized) scattering
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potential and Go, corresponds to the scattered wave which propagates from II

to the observer at 1. The ratio of the A's is the contribution of the other scatter-

ing points to the single scattered amplitude even though they are not directly

involved in the scattering. They give rise to the distortion of the underling lat-

tice very much like a mean field in which the single scattering occurs. As X -

0. V1 -. V1 [cf. (3.3)] and the ratio of the A's approaches unity so that (3.15)

becomes a contribution to the first Born approximation of the solution in this

limit.

In Figure lb the diagram corresponding to the double scattering term

As Igm ga exp i kt. I lb (3.16)

is depicted. Interpreting the factors in (3.16) from right to left, we have, the

plane wave incident on lattice site Is, the scattering from I to 13 followed by

the scattering from Is to the observer at 1. The influence of those points not

directly involved in the scattering is A 1(!,.)/A., but since A, = i, only the A

factor appears.

These results are immediately generalized to the case of m -th order

scattering in a system of n scattering centers. The contribution to t ( I ) of

the scattering sequence II - Iam-, - ... I., - observer is

%9094~a -902 9qtM2'kn1g1t1G n mk (l,2~ ~-s T / (3.1?)

where we let An-m (3 I,,•• ,Um-i,l) represent the determinant An-, which

involves the (n-m) points not including the points from which the wave has been

Z, ° • ° o .. •- • .



scattered. Hence the field observed at site I can be expressed in the series

form

0 (1b) =expli kiIb I + 2go. k6~

+ goagap e'~ A.-2(a-p A. +.. (3.18)

Ths expansion is the generalization of the multiple Born expansion, but with all

terms renorrnalized.
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4. SCAERING CRO SECTION

As mentioned in the Introduction, the use of ultrasonic waves as a probe

into the structure of materials has been very fruitful. In particular, measure-

ments of the total power transmitted from source to receiver through an elastic

material provides information on the distribution of scattering centers within

that material. The attenuation of the ultrasonic wave in a distance z along its

direction of propagation is exp [ - a (w)z ] where the attenuation coefficient a(w)

is dependent on the frequency of the incident wave and is proportional to the

average cross section of the scatterers in the material. This relation has been

used to determine the distribution of grain sizes in polycrystalline materials. If

the attenuation of the wave is due primarily to the elastic scattering of energy

out of the direction of propagation, then the elastic scattering cross section is a

quantitative measure of how much the incident wave is attenuated along the

straight line path joining the source and receiver. Even in the case of a localized

scatterer such as a crack, the scattering cross section determines the intensity

of the signal received at different observation points.

In the continuum the total wave field can be written as

0(r) = expliki-r i  f ( , kf) (4.1)

where the incident wave vector is kt = k ko , the final wave vector is kf = rko

in terms of the unit vectors k a k/k, r a r/ r. Here r is the asymptotic loca-

tion of the observer; f (kt,kf ) is the amplitude of the scattered wave and

cos -(k, kf) = e is the scattering angle. The differential scattering cross

section is given by

W- = If (ktkf) (4.2)

and the total scattering cross section is obtained by integrating (4.2) over the

* ,i . .i, ', "-. . ., . . . . . . .. . . . . . . . . . - - . - - • . . ..
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solid angle dr) = sinEd 9dgo i.c

atg = 2tf If(kkf)I sindO . (4.:3)
0

The total wavefleld on the lattice is given by (2.24) as

*(lb) = expi k bki-bl- Go. V. (4.4)

The scattered intensity is observed at I which is generally a considerable dis-

tance from a typical scattering site 1. . Hence, the large I approximation can be

used for Go. . This is just the Greens function for the original continuum

medium. The other G's in the determinant D, are given by the appropriate lat-

tice Greens functions [cf. (2.11)] determining the wave propagation among

potential sites 1 IJ . We consider the limit of the lattice Greens function (2. 11)
27r

as N -' and define the continuous variable n-m -- =q so that (2.11)

becomes

G(ibno) = exp(i_) df o(4.5)
(2G)3 f (ki V -3)+ t cosqPo (.

J=1

Now writing the continuum position r lb we can rewrite the lattice Greens

function as

* G(lb;n) = b3 Go(rko) . (4.6)

The asymptotic form of the cbntinuum Greens function is

G Gexpikr (4.7)

so that from (4.4) we obtain

*(r) = • -
c '  xi,5  ( e 1k(r'r*)

e 4ir_ ,= S - ri /-, VoD . (4.8)
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Recall that kf - k, r so that the amplitude of the scattered wavefield is

f (k,if.) = Da = VD (4.9) 4
O1rb,

since r >> r8
1 . The dependence of the scattering amplitude on ki is con-

• tained in Do.

In a subsequent section we calculate f (ki. k1 ) for various numbers and

configurations of point scatterers.•
.*

*
*
• .

*:

*.

*"

.......................................



5. CAILUIATION OF LATICE GH S FUNCTION

It is clear from all our discussion that the scattering of waves off defects

specified by V. on a lattice is completely determined by the lattice Greens func-

tion. On a simple cubic lattice we rewrite (4.5) as

I ITcos LxCosmy Cos nz 5
V((1;1,m~~n) =( T fdrfl-f cosz-_cosy _-Cos z (51

where the triad (L ,'L,) specify the integer lattice coordinates, and G = -b 2 8.

Because the integrand of (5.1) is both singular and oscillatory the numerical

integration is non-trivial and requires a certain amount of discussion. There is a

substantial literature on Greens functions of the form (5.1) since they arise in

the model studies of many physical phenomena e.g. in the study of the distribu-

tion of magnetization around an impurity, i.e. localized spin wave modes and

other problems in condensed matter physics.

The emphasis in the literature published on the numerical solutions of (5.1)

has concentrated on obtaining accurate values of S(l;O0.0,O), i.e. the Greens

function at the origin. For the purposes of scattering theory we need to do

much better than this and obtain accurate values of V for arbitrary (L ,m.n).

Accuracy is quite important in order to faithfully calculate the effect of interfer-

ence among the scattered wave components when many defects are present.

Recall that the exact results can be expressed as an infinite perturbation series

so that a modest error in phase in any iterated component could yield substan-

tial spurious effects.

An iterative technique has recently been developed by Morita7 in which a

knowledge of the Greens function at the three sites (0, 0, 0), (2, 0, 0) and (3. 0, 0)

can be used to generate values of 5(0;Lmn,n) at any of the other lattice coordi-

nates. We do not present Morita's complete arguments here, but rather quote

the equations necessary to calculate the Greens function. In particular we point

,e , ,. .. . .. . . . • " ." ." .' ." . . . . - '- .- - . -- " " . " " " ' • . - - ". " " " " - "
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out an error in one of the puunsned expressions.

The recurrence relations that are used to connect the value of the Greens

function at the sites (0. 0, 0), (2. 0, 0) and (3, 0, 0) to its value at other lattice

sites is most easily written in a rotated system of coordinates. We rotate the

angles x and y in (4.1) to x' and y' as follows:

= (z+y)/2 T V = y)/2

' =l +m. im' =1-rn (5.2)
so that the Greens function on the rotated system are

-r8(I);/'.7'n) = W(Q; (V+ m)/2.('-m')/2.n) (5.3a)

8 '([; l +m.l-m, n) = (0l;L,m,n) (5.3b)

as can be verified by direct substitution into the integral (5.1). Note that ' and

m' are either both even. or both odd integers.

Morita's scheme is based on the difference equation for the lattice Greens

function restricted to the n=0 plane. The specific equation he obtains is

(,?,W+ 1)[,V(I,+2,.,+2,o) + 2 1 (',m + 2,0) + T'(I'-2,n'+2.o1]

-2(2"' +1 ) ) 18,(L' + 1,"+1 ,0) + V'(1' - 1,,' + 1,o)]

+ 27' [91(' + 2,m.',o) + 2(f wVI'(',o0) + VI(I'- 2,m.',o)]

- 2(2W. -1 10 IZi(V + 1, m'- 1,0) + V (L' - 1,,' -1,0)]

+ (in' -1)I~f)1'L' . T. -2,0) + 2w'(L',,.. -2 ,0) + "'(r-2,m'-2.0)j = 0 .(5.4)

The manipulation of (5.4) to create a recursion formula for 1 can be found in

Moritas' paper. Figure (2) depicts a flow chart of the logic used in the computer

program to obtain "i. The quantities A through F used in this procedure are:

0.

0.
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A= p- (4p-1) ( [V'(2p,2,O) + (2p,0,0)

-(2p-1) [i/'(2p-1.3,0) + (2? + 1) , (2p-,1,O)

+ (4p-3) 0 ['(2p.,-2,2o) + W'(p-,oo0)]

-(p -) [09'(2p-3.3.o) + WO (2p-3...,o)J} (5.5a)

B = 3D[3r'(2p.2,0) + (2p,oo)1

-2 [ q(2p-1,.o) + CfP l (2p-1. 1.0)]

+ 0[3 ' (2p-2.2. 0) + QG(2 -2, 0.0)]
- [Wq(2p-3. 3, 0) - a (2p-3. 1.0)] (5.5b)

C = (m'+ 1) [2,l(l, .'+ 2,) + W' (I'- 2 '+ .0)]
-20(2m' + 1) [ 1(L + lm' + 1.0) + W ('-1.m' i- 1, 0)]

+ 27'' [81(V + 2,M.,O) + 202 1 m(L'.r',O) + W'(L'-2, m0)]

-20 (2m' - 1) [' (' + 1. m'-l, o) +

+ (m'-l) ['('+2,,m'-2,o) + 2 81 (I', m'-2, 0)] (5.5c)

D = (2p+)-' (2(4p+1)n9'(2p+1.l,0)

- 20" (2p, 2. 0) + fW' ( 2p,0,o) ]

+ 2 (4p-1)0 W7 (2p-1, 1, 0)

-(
2 p-1) [,1(2p-2.2. 0) + W (2 -2.0. 0) (5.5d)

E= 2 O[t( 2 p+1, 3,o) + 3t( 2 p +1,1,o)]

- V'(2p, 4,0) - 8020' (2p, 2,0)- 2 r,' (2p, 0, 0)
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+ 20[5'-'G (2p-1,A. ) + 3car(21p-1,1, o)]

- 3 e1 (2p -2 4,0) - 4 W'(2p -2,2, 0) - W '(2p -2, 0, 0) (5.5e)

F= 20[(4+p).I'(2p+1.3.0)+(2--p)'(2p+1,1,0)]

3 -S'( 2 p.4.o)- 4 (f (+1)+1) W(2p,2,0) + (4p 02-) 1'(2p,0,0)

+ 20 [(1+p) (2p-1,3, 0) + (i-p) I (2p-1, 1,0)] (5.5f)

Equations (5.5a) - (5.5c) inclusive, correspond to Eqs. (5.7), (5.4) (5.9b) and

(5.10b) of Morita respectively. However, Moritas' Eq. (5.12b) is incorrect and

(5.5e) takes its place.

Finally. to calculate values of W' (V,m',n) for nonzero n (and hence

S.(I.mn) also). we use a modification of equations (5.3)and (5.4) of Morita

namely

(L',M1',) = al1(i',m',0)- 1(L - +

*2 g L+1, m, +1,0o)

+ .(L' + 1.fm'- 1,0) + W1 ('-1, m' + 1.0)

1- - (q' (L'-1.m'-1. 0) (5.6)

and, for n ! 2.

(l', ', t)= 20 ('.r'-) - (l',rr'.-)

-W(I' + 1.m'+1.n-1) - m'('-1,'-1,n-1)
- q (l'+,m'-1, n -1) - (' ('-i, m'+i.n-1) (5.7)

Before the above recursion scheme can be applied, however, we require

V(0, 0. 0), 10(2, 0. 0) and W(3, 0. 0) (W 1 (0, 0, 0), ~t, (2, 2. 0) and 59 (3. 3. 0))

as input.

The simple cubic lattice Greens function G(fl; 1, 0, 0) has a convenient

representation in terms of complete elliptic integrals of the first kind.8 The

Greens function is pure real for 3 0 0, and is given by

W/(O" 3;,0,0) dO cos(G)cK(c) (5.8)

n2.
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where ic=2 (Q - cos 0)-1 is the parameter of the complete elliptic integral

K(c)-- ,r - (5.9)oVl - sinZ e

For 1 ! 0! 3, one has for the real and imaginary parts of the Greens function

R (j); 1 0. ) CO - (n .- )

*~~~n fq~; 00do~(O2 icos(10) K ( 1 )
0

+ o f d3cos(Le)Kc) (5.10)
co_,,(fl-2)

Ic°arl(n" - )

f' (Q;L.O,0) = 1K(K) (5. 11)

where

KI = -1 and c' V - (5.12)

In the range 0 fl i , we have
cos-lfl I

* PGR(;.O,) f dOecos(1G)K( 1 )-. K -, f decos(L 0)K(c,) (5.13)

v' (O;,0,0) = Lf cL cos(L0) K (x') (5.14)
7F0

where x, and ,j' are given in (5.12). Formulas (5.8) - (5.14) were numerically

evaluated for I = 0, 2 and 3 and used as input for the recursion scheme previ-

ously described. Figure 3 shows plots of the real and imaginary parts of

@(1 0. 0, 0), 1( V; 2, 0, 0) and 9(0 ;3, 0. 0).

..
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6. RESULTS OF SCATTERING CAWULATIONS

In this section we present some results of scattering plane waves off various

planar configurations of point scatterers. We have chosen the incident radiation

to have wavelength equal to the lattice spacing b. and to propagate in the z

direction. All scatterers lie in the perpendicular x-y plane. Polar angles 9, o

define the directions along which we view the scattering amplitude f(S, rp) (see

figure 4).

A. Scattering From a Line.

The first sequence of numerical results we show are polar perspective plots

of the magnitude I f (0,!) I for one, two, three, four and five scatterers arranged

to form a line. If just a single scattering center is present (located at the origin

(0, 0, 0), say), there are no preferred directions for the scattering, theref-re I fl

is uniform over all angles 0,V . The result of adding a second scattered at (1, 0,
0!

0) is shown in Figure 5a. (The number and positiornie t; e scatte're-s is indicated

in the upper left hand corner of the figure.) We see that the scattering ampli-

tude in maximal in all directions perpendicular to the preferred axis, i.e. along

= ir/ 2 and 37r/ 2 for all 0 values. I f I is also maximal parallel to the x-axis,

at S = 0, 7r and 0 = ir / 2. The amplitude decreases away from these direc-

tions due to destructive interference among ray paths. The addition of a third

scatterer, at (2, 0, 0), gives rise to Figure 5b. The directions of maximal I f I

remains the same (serving to identify the line of scatterers), but I f I decreases

more rapidly away from these regions than for the case of two scatterers. More

significantly, a subsidiary ridge has appeared as a new topographic feature,

marking the influence of multiple scattering events. Figures 5c and 5d show the

effect of adding a fourth and a fifth defect. We see a further sharpening of the

main ridges, and the introduction of additional subsidiary ridges.

•

~%
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B. Scattering from Perpendicular Lines

* Figures 6a - 6d show a sequence of plots of If ( G, ) as we add to the line.

but now in a perpendicular direction. This sequence is most easily understood if

we first consider the scattering off a line of defects arranged along the y-axis

* (instead of the arrangement atong the x-axis which led to Figure 5d). Symmetry

implies that such an arrangement should lead to a scattering amplitude f ( . ro)

related to the previous amplitude by the rotation 9. rp -, G. + 7r/ 2. All features

* of the perspective plot of I f I would simply be shifted by ir/ 2 along the v - axis.

Bearing this in mind, the depression along the ridges at g = ir/ 2. 3ir/ 2 in

figure Ba and subsequent plots is understood as a combination of Figures 5d with

the shifted versions of 5b - 5e. The configuration of scatterers which gave rise to

Figure 6d has a symmetry line along 9 = 7r/ 4, and we clearly see their sym-

metry in the scattering amplitude plot. The sequence of Figures 6a - 6d is a pro-

gression toward this symmetric arrangement.

C. Scattering From a Plane.

We now consider adding parallel lines of scatterers so as to form a plane

square made out of twenty five scatterers. Figures 7a - 7d show the relevant

sequence of plots. It helps to realize that the final square configuration (produc-

ing Figure 7d) is symmetric around g = 0, 7r/ 4 and r/ 2. The sequence of Fig-

ures 7a - 7d shows progression toward the symmetric result.

D. Scattering From a Cavity.

Finally, we consider scattering from cavities obtained from the square

configuration of Figure 7d by removing scatterers from the interior. Comparing

Figures 7d and 8c it is apparent that there is significantly more structure in the

cross section for scattering from a cavity than for scattering from the rectan-

gle. The increased multiple scattering effects in the cavity enhance the subsidi-

ary maxima ate = iT/4, 1r/2 and 37T/2.

0q

,',,".g~~o,' ,-.-...........,. ........ ... . ...
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eik" (1-1I) -

S/ g0 1  (a)

x x
1 2 3

etk- I
e

0 go 3

9311

(b)

2 3

Figure 1. (a) Single scattering of plane wave by potential at site I .
(b) Double scattering of plane wave from lattice site 1, to lattice site l3,
followed by scattering from I to observer.
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CALculTr 19(o.0.0, t(Zoo)',(3..0 B DIEC TEGRATON

41(2p+i. 1. 0) a(A-B)/ 2

*W'(1. 2p + . 0) aW'(2p +1. 1. 0)

4'(2p+1.3.0) =B-%(2p+.1.0)

'q(32+1O ) = 9 1 (2p. 3.0)

* C = 2p-1

in 3

+Z1W+2 0 -Ci ''1

*e> p+ '5('z +2r+2. 0) V +Z TW+2, 0)

NOn "L'+2

181(2p+Z 0. 0) - (4p.De.-F)/ 4(1e2p)j

'(0. 2p +2. 0) - 9 1 (,p+?-0. 0)

11'(2p.2.Z2.) = a F,(p200

'5'(2.2p.2.) a 91(2p+zz0)

* W(2p +p_. 0) l ( *1(2p+2. 0.0)

(81(4.2P+2. 0) '- (q'(2p+2.4. 0)

r .2p

YE

NO

Figure 2.
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'W (2, 0. 0). and 19 (3. 0, 0). These are used as input for Morita's recursion

sche me.



.17.

A - -

k f -V 1

x

FIgure 4. Polar angles E, V for viewing scattering amplitude f( G,rp).
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